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A B S T R A C T   

Electric vehicles (EVs) may add new challenges during mass evacuations. Understanding the magnitude of the 
impacts EVs may have during the pre-departure stage of mass evacuations is an essential first step when planning 
for mass evacuations in a future where EVs are more common. In this paper, a generalized framework based on a 
G/G/c/N queueing model (general arrival process, general service process, c charging stations, and N EVs) was 
developed to estimate the number of vehicles that can be charged in the pre-departure evacuation stage and thus 
assess the pre-departure impacts. The model outputs are the number of vehicles that have or have not been 
served during the evacuation period, as well as average queue times and maximum queue lengths. This model is 
tested using the current electric vehicle fleet and charging infrastructure of Prince George, British Columbia, as a 
case study with a hypothetical short notice forest fire scenario. It was found that for the present-day case of 
Prince George, there is not enough charging network capacity to service all vehicles before departure. Increasing 
the number of charging stations, providing earlier evacuation notices, and ensuring a balanced makeup of level 3 
fast-charging of different types were all found to be effective in increasing the number of EVs that received 
adequate charging before departure.   

1. Introduction 

Mass evacuations are difficult situations to manage. There are many 
uncertainties and potential problems that might arise during evacua-
tions. Electric vehicles (EVs) may add new challenges to an already 
difficult situation, both for evacuees and for emergency managers. 
While, in the present, EVs make up a small proportion of the total ve-
hicles on the road, their numbers continue to grow. As EVs continue to 
increase in popularity [1], it will be prudent to identify what problems 
might arise from their introduction to mass evacuation situations, model 
their impacts, and to explore potential solutions before being forced to 
deal with them in retrospect. (FIg. 1) 

While EVs may promise reductions in emissions and potentially 
reduction in fuel costs for their users, in their current form, they bring 
some significant trade-offs. EVs often have longer charging times than 
conventional vehicles’ fueling times, leading to concerns about charging 
network capacity in emergency situations. They also often have shorter 
ranges than conventional vehicles, leading to concerns about vehicles 
running out of charge en route to their destination. Although these range 
and fueling times differ significantly among EV makes and models, 

overall many EVs still perform worse in these metrics than conventional 
vehicles in the present. While these are manageable hurdles in business- 
as-usual situations, they may magnify existing challenges during evac-
uations, especially under short-notice scenarios. 

Very little research has explored the topic of EVs and during mass 
evacuations. One of the leading efforts in this direction is the research by 
Adderly et al. [4]. To our best knowledge, with the exception of this 
work, no other work has modelled charging or refueling of vehicles 
before an evacuation. One potential problem that EVs will magnify is 
vehicle refueling before evacuations. Reports of long lineups at gas 
stations during evacuations are quite common [5–13]. Increased 
charging times and shorter ranges would increase the time spent refu-
eling and the number of stops during evacuations. Any vehicle that has 
insufficient charge to evacuate will likely be temporarily abandoned, 
which will at best only impede the evacuation of the passengers of that 
vehicle if they abandon their vehicle far to the side of the road, and at 
worst could prompt a partial lane closure were an out-of-fuel vehicle to 
fully or partially block a lane of traffic. Even stalled vehicles on the 
shoulder can reduce the capacity of roadways as other motorists reduce 
their speed when passing. In an evacuation situation, stalled vehicles on 
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the shoulder can also block emergency vehicles and supplies. 
To further complicate the issue, in the present, EV charging stations 

come in a variety of types and with different vehicle adapters. In contrast 
with gas stations, which are very common and are compatible with the 
vast majority of conventional passenger vehicles, today’s limited 
availability of EV charging stations and the diversity in the types of 
charging station and related compatibility with the specific EV models 
further limits the number of options evacuees have. Thus, not every EV 
model may be equipped to charge at a certain station. Some vehicles can 
not make use of DC fast charging stations at all. 

On top of pre-evacuation charging concerns, EV range concerns 
become apparent when considering the kind of disasters that frequently 
cause mass evacuations. The distance that evacuees need to travel varies 
heavily between different disasters. In the 1979 Mississauga train 
derailment, 200,000 evacuees travelled an average of only 10 km 
outside the mandatory evacuation area [14]. In contrast, when Hurri-
cane Floyd approached Florida, Georgia, and the Carolinas in 1999, 2 
million evacuees travelled 242–402 km on average [15]. During the 
2016 Fort McMurray wildfire, the nearest major city, Edmonton, was as 
far as 435 km away. A hypothetical evacuee from Key West, Florida may 
have to travel over 640 km to reach Orlando. This would likely require 
multiple stops to refuel vehicles. Hurricanes and wildfires are the two 
most likely candidates to prompt long distance evacuations as they 
affect large areas and can pose a significant risk to human life. 

While EVs are popular in urban areas in the present, introduction of 
battery-electric pickup trucks may encourage some rural residents to 
switch from conventional fuel vehicles. Ford has recently announced a 
battery-electric version of the F-150, the most popular vehicle series in 
North America [16]. EVs evacuating from wildfires in Northern Alberta 
or British Columbia may not be as much of a stretch of the imagination 
as it presently seems. 

To better understand the magnitude of the impacts EVs may cause 
pre-departure during mass evacuations, this paper develops a frame-
work based on a G/G/c/N queuing model to estimate the charging 
network capacity in an area before the departure during a short-notice 
evacuation. Throughout this work, Kendall’s notation will be followed 
when describing queuing models. The queuing models discussed in this 
work have an arrival process following a certain distribution which 
governs arrivals to stations (general – G, or a Markovian Poisson process 
– M), a service time process following a certain distribution which 
governs the time it takes for charging to be completed (general – G, or a 
Markovian Poisson process – M), a defined number of charging stations 
(a whole number of value c), and a defined number of arriving EVs (a 
whole number of value N). 

Modelling the problem as a queueing problem with a wide range of 
input parameters provides a generalized framework capable of realisti-
cally estimating EV charging network capacity. This work is novel in 

that it is the first to model charging or refueling of vehicles before an 
evacuation and does so by being the first to incorporate different EV 
makes and models, as well as different levels of charging stations in a 
model of EV charging network capacity. Furthermore, rather than using 
a Poisson arrival process, this research presents the first work that in-
corporates a realistic arrival process that reflects historically observed 
evacuation patterns. Having a more realistic arrival process and service 
processes is important because traditional queueing assumptions, like 
Poisson arrival and service processes do not apply in evacuation 
scenarios. 

The outputs of the developed model are performance indicators in 
the form of number and percentage of vehicles that have or have not 
been fully charged during the evacuation period, average queue times 
and maximum queue lengths. While the work in this study focusses on 
evacuations, the methods used to incorporate different vehicle models 
and charging station types could be used to estimate charging capacity 
under business-as-usual scenarios as well. Thus, this newly developed 
model can be used as a decision support tool for: 1) informing decision- 
makers to assist in evaluating the capacity of their EV charging network, 
and 2) allowing emergency managers to better assess whether their 
communities, especially those that do not have a large number of fast- 
charging stations, can handle the demand for charging generated by a 
mass evacuation. While this research uses Prince George as a case study, 
the framework is general enough and thus transferable to other com-
munities by changing the input parameters (e.g. type and number of 
charging stations) to incorporate EVs into their evacuation planning. 
Furthermore, the trends in charging network capacity and traffic models 
should be similar in any remote location at risk of wildfire. 

2. Review of the literature 

The majority of the literature on EV charging networks focusses on 
optimal placement locations [17–22]; or the impacts on the electrical 
grid [23–27]. Feng et al. [23] in particular is worth noting as it deals 
directly with EV evacuations. While it does not address capacity issues 
relating to demand for EV charging during pre-evacuation queuing, it 
suggests that there may be electrical grid capacity issues from a surge in 
power demand due to increased charging in the pre-evacuation period. 

While no work focusses on the maximum throughput of EVs under 
emergency circumstances, work that models charging network capacity 
under business-as-usual circumstances can be drawn on. Adderly et al. 
[4] are the only authors to date to examine the challenges that EVs may 
give rise to in mass evacuations. Their work focusses on potential policy 
implications and provides simple estimates of EV charging network ca-
pacity and recommended distances between charging stations. This 
study did not model the impacts of EVs after departure. 

Aveklouris et al. [28] examine both charging station and parking 
capacity as M/M/c queues with abandonment, but do not examine 
different vehicle or charger classes. Said et al. [29] and Akbari & Fer-
nando [30] model the problem as a M/M/c queue and M/M/1 queue 
respectively, but again do not take different vehicle models or charging 
station types into consideration. Zhang & Grijalva [31] model residen-
tial vehicle charging station impacts on the grid as an M/G/∞/N model 
where charging time is based on an empirical distribution informed by 
smart meters at homes with level 2 charging stations. Liu & Bie [32] 
incorporates multiple types of different charging stations with the goal 
of determining the optimal allocation of charging stations under 
business-as-usual conditions. As discussed in more detail in Sections 
3.3-3.5, pre-evacuation charging may not resemble business-as-usual 
charging, leading to different assumptions about the structure of the 
queueing problem than those used in the studies above. While this work 
builds a solid foundation, there is room to explore models that incor-
porate different arrival processes, different vehicle makes and models, 
and different types of charging stations. 

Evacuations may have relatively long or relatively short notice times. 
In the case of Hurricane Katrina, a voluntary and then mandatory 

Fig. 1. Electric vehicle sales in Canada over time. Reprinted from “Market 
Snapshot: EVs in Canada” by Canadian Energy Regulator [2]. 
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evacuation notice went out 47 h and 42 h respectively before the storm 
made landfall [33]. In the case of the 2011 Earthquake in Japan, an 
evacuation notice was sent out 3 min after the earthquake struck, 
leaving only 27–37 min before the tsunami made landfall [34]. Other 
events, like the 2016 Fort McMurray wildfire fall somewhere in be-
tween. At 2:00PM, May 3rd, mandatory evacuation orders were given 
for southern communities. This expanded to a full mandatory evacua-
tion for all of Fort McMurray at 6:20PM the same day. During this time 
period, over 45% of the population leaving the city by vehicle had 
evacuated. By 12:00AM that night, almost 90% of those leaving by ve-
hicles had evacuated. Over this 10 h period, nearly 35,000 people (17, 
500 vehicles) evacuated the city. 

Many authors have explored the distinction between voluntary and 
mandatory evacuation notices and their accompanying impacts on when 
individuals choose to evacuate [35–39]. Voluntary and mandatory 
evacuation notices play a significant role in predicting when evacuees 
choose to depart, particularly in short-notice or no-notice evacuations 
[40–45]. Auld et al. [41] notes that during no-notice respondents who 
received a government order to evacuate and see others evacuating rate 
their likelihood of evacuating as well at a 4.5 on a scale of 1-to-5. Beverly 
& Bothwell [46] found that in a 27 year study of 547 wildfire evacua-
tions in Canada, 90% of evacuees left due to an evacuation order by the 
government. 

There have been numerous efforts to model evacuation time based 
on evacuee behaviour during hurricanes [47]; Dixit et al., 2012; [37,48], 
as noted by Golshani et al. [49] no studies have focused on no-notice or 
short-notice behaviour-based evacuation time models. Absent further 
behaviour-based models of short-notice or no-notice evacuation depar-
ture times, reconstructed empirical departure curves will be relied on to 
estimate departure curves for this work. 

Based on past events, the US National Oceanic and Atmospheric 
Administration’s National Hurricane Center issues hurricane watches 
48h and hurricane warnings at 36h before an area experiences tropical 
storm force winds [50]. Similar time frames were seen in practice during 
Hurricane Irene [51] and Hurricane Floyd in South Carolina [15]. A 
partial evacuation order for the town of Paradise, California was issued 
1 min after wildfires were reported in town, and the full evacuation 
order was not given for another 1 h and 17 min [52]. In the 2016 Fort 
McMurray wildfire, mandatory evacuation of the western communities 
like Abasand began at 2:34PM, with fires reported in the community at 
4:09PM, giving the time between warning and event at 95 min. 

Many authors have also tried to create empirical departure curves 
and fit those curves to theoretical distributions. Most notably, Lewis 
[53] proposed using sigmoid curves, Radwan et al. [54] proposed using 
logistic distributions, Tweedie et al. [55] proposed using Rayleigh dis-
tributions, Cova & Johnson [56] proposed using Poisson distributions, 
and [57] proposed a sequential logit model. These studies primarily 
focused on hurricane evacuations, while Cova & Johnson focused on 
wildfire evacuations. These theoretical models are often difficult to 
validate given the changing circumstances and characteristics of each 
disaster. Thankfully, some excellent studies have been carried out to 
determine empirical evacuee departure curves. Li et al. [51] constructed 
an evacuation curve based on traffic data during Hurricane Irene. They 
determined that Rayleigh and logit distributions best fit the empirical 
departure curves [58]. constructed an empirical evacuation curve for 
vehicles leaving Fort McMurray but did not fit it to any specific 
distribution. 

3. Methodology 

3.1. Simulation methodology & parameterization 

In this paper, the problem of modelling EV behaviour during short 
notice evacuation will be based on a G/G/c/N queueing problem (gen-
eral arrival process, general service process, c charging stations, and N 
EVs). The justification for this choice will be discussed further below as 

the details of emergency evacuation scenarios and EV characteristics are 
explored in more depth.). Only battery EVs (from here on referred to as 
just “EVs”) will be examined for this study as plug-in hybrid electric 
vehicles operate similarly to conventional vehicles with their batteries 
often supplying only a moderate portion of total range. 

The problem is approached using Monte Carlo methods and is 
simulated in the R programming language [59]. 

The model is a discrete-event simulation with randomized inputs. 
Vehicles arrive with randomized vehicle makes and models, charge 
levels, and arrival times. The number of vehicles, the number and type of 
charging stations, and the time window in which vehicles are able to 
charge are fixed based on the scenario explored. The service times for 
each charging station vary depending on initial charge levels, vehicle 
make and model, and charging station level. The outputs of the model 
are the number of vehicles served, the maximum queue lengths, and the 
average time spent in queue (Fig. 2). 

To compensate for the relatively low number of input vehicles and 
the large amount of potential variability due to the differences in 
charging time and server availability between makes and models, the 
simulation was run 1000 times for each scenario and all outputs were 
averaged over this number of samples. 

Two options present themselves for how to model multiple charging 
stations. The first is to model each charging station as its own queue. The 
second is to model multiple stations as a single queueing problem with 
as many servers as there are charging ports. The first option would be 
more accurate if arrival curves differed at the different charging stations. 
A model that takes into account travel time to charging stations would 
benefit from this setup. As this model does not take travel times into 
account and assumes the same arrival curve for each charging station, it 
is a useful simplifying assumption to model each charging station as 
belonging to the same queue. The problem will be simulated in the R 
programming language [59]. It is also assumed that all drivers are 
familiar with their surroundings and have perfect information about 
which charging stations their vehicles are compatible with and would 
not queue for a charging station they would not be able to use. This 
assumption is justified in part by the rise of mapping technology like 
Google Maps or ChargeHub that allows EV owners to locate EV charging 
stations with adapters they can make use of. This assumption may not 
hold in all cases, such as a scenario where communication infrastructure 
is not available. However, an assumption of imperfect information 
would not significantly change the results of this simulation as addi-
tional delays from EV owners who discover they are mistaken and 
requeue at a different charging station are only incurred if travel time to 
and from stations is taken into account. 

While a closed-form solution could be created, it would be a complex 
and inefficient undertaking. The different classes of servers and cus-
tomers would make any closed-form equations unwieldy. Approxima-
tions that might simplify this effort, such as Little’s Law, would not hold 
as the system is not stationary. 

3.2. Overview of the case study 

In 2017, wildfires in British Columbia displaced over 45,000 people 
and caused over 10,000 people to evacuate to Prince George [60]. The 
next year similar circumstances prompted the evacuation of nearly 3000 
people from the surrounding region to Prince George [61]. While fires in 
these seasons did not directly affect Prince George, Prince George has 
been identified as being at high risk for wildfires [62,63]. 

Currently, Prince George has nine EV charging stations at five 
different locations. There is one level 3 fast-charging station, and eight 
level 2 charging stations. Prince George has a population of 86,622 as of 
2016 [64]. The province of British Columbia had a population of 4.648 
million in 2016. The latest estimate for total number of EVs registered in 
British Columbia is 31,000 as of Q3 2019 [65], with approximately 51% 
being battery EVs [66]. There is no data available comparing sales in 
larger and smaller municipalities. It is assumed that EVs are not evenly 
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Fig. 2. Inputs and outputs of the queueing model.  

Fig. 3. Locations of charging stations in Prince George. Yellow markers are level 3 charging stations, and blue markers are level 2 charging stations. Some markers 
have multiple charging stations at that location [3]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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distributed throughout the population, and that a mid-sized and 
geographically isolated municipality like Prince George would be ex-
pected to have a smaller proportion of EV ownership than a larger 
municipality like Vancouver. EV sales in the Cariboo region which in-
cludes Prince George are only 7% of the EV sales percentage of Van-
couver and Victoria (CTV News, 2019). As Prince George is the largest 
municipality in the Cariboo region, their EV sales percentage is likely to 
be higher than in other neighboring small rural municipalities and is 
likely to bring this ratio up slightly. A conservative assumption will be 
made that EVs will be found at 20% the rate of the background popu-
lation in BC. This leads to an estimated nTotalEVs of 59 (Fig. 3). 

Prince George has EVs and EV associations, as well as EV charging 
stations and dealerships that sell EVs [67]. This location strikes a bal-
ance between having a manageable level of complexity given the rela-
tively small number of EVs and charging stations, while still being large 
enough and at high enough risk to be investigated for a mass evacuation 
scenario. 

Prince George shares similarities to Fort McMurray, Alberta, Canada, 
in terms of population and wildfire risk. Both are relatively far distances 
from other major population centers and have a limited choice of 
evacuation routes. In summer 2017, Fort McMurray was subject to a 
wildfire warranting a mandatory evacuation notice. With this similarity 
between the two cities, the departure curves for Prince George can be 
inferred from past empirical work by Woo et al. [58]. 

For this case study we will consider a hypothetical wildfire with a 
relatively short notice time. Four hours and 20 min will pass between 
voluntary evacuation and mandatory evacuation, with fires reaching the 
city by 8 h. The cutoff time Tevacat which fires enter the city and charging 
is no longer possible will be the 8-h mark. 

3.3. Arrival process 

To estimate an arrival rate for vehicles at EV charging stations, one 
must determine what type of distribution the arrival to stations follows, 
how many vehicles may need to be serviced in a location, how much 
time is available for charging in an emergency scenario, and the period 
of time in which charging can occur. Any fueling of vehicles would have 
to be done either in preparation for evacuation (during evacuation alerts 
or during voluntary evacuation notices, if there are any), or in the 
evacuation time period. 

Departure curves for the city can be inferred from past empirical 
work, as discussed in Section 2. The departure curve created by Woo 
et al. [58] is the closest analogue to the case study examined in this 
paper. During the Fort McMurray wildfire, a mandatory evacuation 
notice was given 4 h and 20 min after evacuation began, and the time at 
which 90% of vehicles had evacuated was approximately 11 h after 
evacuation began. The left tail of each curve is much shorter than the 
right tail indicating rapid mobilization prior to mandatory evacuation 
notices, followed by long delays for the last 10% of evacuees. 

Caution should always be taken when trying to generalize theoretical 
departure curves from the limited data available for two very different 
types of emergency. With this in mind, a Rayleigh distribution will be 
chosen due to the existing evidence in its favor in both hurricane 
evacuations and the Fort McMurray evacuation. 

From these departure curves, we can theorize an arrival curve for 
charging stations. In short warning notice situations like wildfires, it will 
be assumed that refueling will likely be the last action before departing, 
taking place during or after the process of gathering family members, 
belongings and supplies, and making other arrangements [42,68–70]. 
This means it can be assumed that for all vehicles that need to charge 
before departure, the cumulative arrival curve at charging stations will 
take the same shape as the evacuee departure curve. This simplifies 
matters greatly, however, it is important to note that significant delays 
due to charging could slow down the rate of departures from the 
charging stations, and these new delays due to charging would not be 
represented in the departure curves of the empirical studies in Section 2. 

A theoretical Rayleigh departure curve with a scale parameter σ 
controlling the slope of the curve can be inferred from the cumulative 
departure of vehicles over time in the case studies that share similarities 
with the scenario being modelled. The cumulative distribution function 
for the Rayleigh distribution is given in Equation (1): 

F(x; σ)= 1 − e
− x2

(2σ2) (1) 

Without access to the datasets used in the studies discussed, σ can 
only be estimated from the reported cumulative percentage at the 
mandatory evacuation time. Fitting the Rayleigh distribution to a cu-
mulative probability of 45% at the mandatory evacuation time (260 
min) gives a σ of 237.78. This scale parameter models the right tail 
reasonably well; giving an 87% cumulative percentage of departures at 
8 h into the evacuation, compared with roughly 85% cumulative per-
centage of departures at the same time in the Fort McMurray departure 
curve (Fig. 4). 

Using inverse transform sampling, a set of independent and identi-
cally distributed Rayleigh random variates, X, can be generated from 
Equation (2): 

X = σ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 2 ln U

√
(2) 

Where X is a Rayleigh random variate, and U is a uniform random 
variate. These variates are then sorted from least to greatest and the 
differences of these sorted random variates are the inter-arrival times of 
vehicles to the system. An example of these cumulative arrival and 
interarrival time curves for a single sample are given in Fig. 5. 

It should be noted that in comparison to an exponential distribution, 
a Rayleigh distribution has less dispersion (coefficients of variation of 1 
and 0.523 for exponential and Rayleigh distributions respectively). 

The scale parameter will need to be fit for each evacuation window 
considered. Tevac will be considered the period of time between a 
voluntary evacuation notice being issued, and the interruption of 
charging services (e.g. fires entering the affected community forcing 
immediate departure or losing power at a charging station). It will be 
assumed that this is the period of time between the voluntary evacuation 
notice and a cutoff time when cumulative evacuation percentage passes 
roughly 85%. It can be reasonably assumed that stations at this time will 
no longer be able to operate for the reasons listed above. 

3.4. Service time distribution 

Each EV model has its own battery size, charging profile, and type of 
charger it is compatible with. Service times will vary between models 
and chargers. As such, it is appropriate to use a class-based system to 
model service times. Each vehicle is assigned a class that represents its 
model and the type of charging station(s) it is compatible with. The 
number of EVs of each model can be estimated from the ratio of sales of a 
specific model to the total number of EVs sold. Each vehicle entering the 
system is not likely to have the same initial charge. It will be assumed 
that vehicles will have some preexisting charge between 20% and 100%. 
EV owners are unlikely to let their vehicles drain completely to prevent 
battery capacity reductions from deep discharges. Lithium-ion batteries 
under 20% and above 80% battery charge have severe diminishing 
returns on charging per unit time [71]. It will be assumed that vehicles 
above 80% battery charge leave the system immediately (having chosen 
to evacuate without spending further time charging). The number of EVs 
requiring charging after removing the EVs already above 80% battery 
charge, nrEVs, is 44 (rounded to the nearest whole). It can be assumed 
that preexisting charge is uniformly distributed absent any prior evi-
dence to the contrary. No abandonment of queues will be assumed 
(Fig. 6). 

Given the many different factors that go into charging time, charge 
times for EVs using level 2 and level 3 chargers are estimated from 
manufacturer information. Detailed charging profiles are not supplied 
by manufacturers. Service times are assumed to be linear given that 
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charging speed is roughly constant between 20% and 80% charge level. 
The service times are given by Equation (3): 

Sijk = x*Cijk (3) 

Where Sijk is the service time for an EV model i with a charge-to-80% 
time Cijk for a charging class j on a charging station of level k. x is a 
uniformly distributed variable between 0.2 and 0.8 that represents the 
preexisting charge level of the vehicle. 

For this scenario, it will be assumed that EVs will charge fully until 
reaching 80% charge level. Although there are no destination-surveys 
for Prince George, evacuation route choice is constrained, and evac-
uees would need to travel along one of the four evacuation routes out of 
town 228 km westward to Burns Lake, 403 km to northward to Dawson 
Creek, 209 km eastward to McBride, or 121 km southward to Quesnel. In 
comparison, a mid-size EV such as a Nissan Leaf has a maximum range of 
243 km in older models and 364 km in newer models. There are no 
Research by Akbarzadeh and Wilmot [72] suggests that evacuees do 

take into account the actual and perceived levels of service (defined as 
the number of gas stations and hotels that actually exist and are the 
number believed to exist along the route respectively) when selecting 
evacuation routes during hurricanes, and the importance of these factors 
increases as the hurricane approaches. However, accessibility, distance, 
and road type are significantly more important factors for route choice 
than level of service. It is important to distinguish that these factors help 
determine route choice, but further research is needed to determine how, 
or if, evacuees take fuel or charge levels of their vehicles into account 
when determining destination choice. Range anxiety, which is a concern 
for even urban EV owners may combine with imperfect information 
about charging station availability along their chosen evacuation route 
(the perceived level of service), as well as the EV owner’s uncertainty 
about the additional mileage gained per minute of charging, and these 
factors could further encourage charging to full. As such, for this sce-
nario it will be assumed that EV owners charge without cutoff until the 
80% point of steep diminishing returns. Empirical studies of charging 

Fig. 4. Departure curve for σ = 237.78.  

Fig. 5. Single sample cumulative arrival and interarrival curves for σ = 237.78 and nTotalEVs = 59.  
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behaviour will be needed to generalize this assumption to locations with 
charging stations located along evacuation routes. 

Vehicles may only charge at charging stations of compatible 
charging classes and compatible charging station levels. Charging is 
first-come, first-served to charging stations that are able to serve vehi-
cles of that particular class. A rank r is assigned to each vehicle based on 
its position in the queue with the oldest arrivals having the lowest rank. 
As charging stations of class j become available, the vehicle of the 
minimum rank with class j may leave the queue and begin service. If 
multiple stations are available, evacuees will choose to charge at the 
charging station with the highest level k compatible with their vehicle 
class. It is assumed that evacuees will use the first charging station 
available of their vehicle class j rather than waiting in the queue in hopes 
that a charging station with a higher level k will open up. Choosing 
realistic values for Cijk will involve exploring the characteristics of EVs 
and EV charging stations in more depth (Fig. 7). 

EVs charge at different speeds in different situations. Current level of 
charge, battery age, and external temperature can all affect the time it 

takes for an EV battery to charge. Charging speed also depends on the 
type of charging station used. Level 1 charging stations are 120V con-
nections such as a standard household wall outlet. Level 2 charging 
stations are 240V connections and can be installed in homes or parking 
lots for an additional cost. Level 3 fast-charging stations have connec-
tions of 480V or more. The difference in charging times between levels is 
quite substantial. A Nissan Leaf can charge to 80% of its capacity in 40 
min with a level 3 charger. The charge time increases to 6.5–11 h for a 
level 2 charger, and 18.5 h for a level 1 charger [73]. 

While recent studies such as Lee et al. [74] examining 
business-as-usual EV charging behaviour in California indicate that a 
majority of users make use of home-charging in the present, there are 
reasons to believe that in an evacuation public charging stations may 
play a larger role when evacuees may value their time differently. A 
Nissan Leaf using a public level 3 fast-charging station takes only 6% of 
the time to charge an equivalent amount at a home level 2 charging 
station. During a short-notice evacuation like the wildfire in this sce-
nario, a hypothetical evacuee faces a decision about whether to charge 

Fig. 6. Relation of battery capacity (State-Of-Charge) and charging speed. Reprinted from "Estimating the charging profile of individual charge sessions of electric 
vehicles in the Netherlands" by Mies, J. J., Helmus, J. R., & Van den Hoed, R, 2018, World Electric Vehicle Journal, 9(2), 17. CC BY-NC-ND [71]. 

Fig. 7. Basic structure of the G/G/c/N queueing model used.  
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at home for a period of multiple hours or seek out a level 3 fast-charging 
station and charge in 20–40 min (the evacuee must also take into ac-
count the length of time they believe they would spend waiting in the 
queue when making this decision). Further research is needed to 
determine whether evacuees in an emergency situation are likely to 
choose to charge faster and depart earlier, potentially avoiding traffic 
and possible danger, or prioritize a shorter charging time so they could 
use their EV to gather family and supplies or make other trips. 

While home charging is the most frequent mode of charging for EV 
owners in the present day, it is uncertain that it will continue to play 
such a primary role in the future. Early EV adopters are more likely to 
have higher incomes and have the resources to install home-charging 
stations, as well as own homes which are suitable for installing level 2 
chargers. Lee et al. [74] note that >80% of respondents in their survey 
had incomes above the California median income, and >80% of re-
spondents owned detached single-family homes. As EVs continue to 
decrease in price and the demographics of EV owners shift, it is likely 
that there will be more reliance on public charging facilities for people 
that can not afford to install home charging stations, or do not have the 
ability to install their own home chargers (renters, people living in areas 
with only on-street parking, people living in multi-family residences 
where access to charging stations is limited or shared among multiple 
residences). Engels et al. [75] predict that the demand for public 
charging infrastructure will continue to increase over time as middle and 
low-income households without home charging options begin to pur-
chase more EVs. As EV ownership becomes more widespread, it is likely 
that during an evacuation these demographics without access to home 
charging will compete with time-sensitive evacuees that have home 
charging for public level 3 DC fast-charging charging stations. 

Level 3 fast-charging stations are commonly found with three 
different specialized connectors: Combined Charging System (CCS), 
CHAdeMO, and Tesla Superchargers. Each have the same basic func-
tionality, but different EV models are compatible with one or more of 
these connectors with adapters (see Appendix A for further discussion on 
charger types). Some models are only capable of making use of level 1 
and level 2 chargers. Not every level 3 station provides the same charge 
rate, however, the EV models that have been selected tend to have an 
upper ceiling by design on how quickly they are able to charge. Future 
EV models and future level 3 charging stations are likely to provide 
faster charging rates [76]. Not every EV has the same charging profile. 

To determine which EV charging classes will be used, total EV sales 
by model up to the year 2017 in Canada are used to determine which 
EVs are most common. For Canada, the total vehicle sales by model are 
available for the country as a whole and by province. Charge times and 
ranges for models with shares of greater than 1% of total battery-EV 
sales were examined. As a simplifying assumption, charge times and 
ranges are given for the latest make and model of each vehicle. This will 
increase the average ranges and likely increase charge times for the 
models chosen. This will provide a less accurate assessment of current 
scenarios which have vehicles of older makes on the road, but is in line 
with the trend of battery improvements to EVs when predicting the 
impacts of scenarios that take place in the future. 

3.5. Number and type of charging stations 

The number of public chargers cjk of class j and level k is known with 
some confidence. Resources like ChargeHub [3] offer maps of public 
charging stations in a location. Other local resources may be used as well 
to determine the number, location, and type of charging ports available. 
It is up to the judgement on the modeler whether level 2 charging sta-
tions should be included as their long service times may only allow 2–4 
vehicles to be serviced from 20% to 80% in a 24-h period. It may also be 
difficult to account for the number of private level 2 chargers installed in 
homes. Data on how many level 2 charging stations have been installed 
in homes could potentially be estimated from the number of rebates 
given for installing said chargers, if the location in question has rebates 

of this kind and tracks this data. Level 1 charging stations can be dis-
counted in short-warning scenarios as they have prohibitively long 
charge times during a short-notice scenario and are theoretically 
‘available’ at any location with a wall outlet. 

3.6. Performance measures 

The most important outputs of this simulation are number of EVs 
requiring charging that were served (nserved), the total number of EVs 
served (ntotalCharged which includes the number of EVs that already had 
above 80% charge before entering the system), percentage of total EVs 
served, maximum global queue lengths (Nmaxqueue), and average queue 
times (Tavgqueue). Taken on its own, the number of vehicles served is an 
indication of whether EV charging networks can handle the sudden 
influx of demand posed by a mass evacuation. The number of EVs un-
served will also give an indication of how many vehicles will likely run 
out of charge en route to their destination. Maximum and average queue 
lengths may be a useful indicator of congestion from blocked in-
tersections due to charging; however, these statistics are more useful in 
predicting area-specific congestion when queues for individual stations 
are modelled. 

4. Results 

The simulation was run 1,000 times for each scenario examined and 
all outputs are averages over this number of samples. While there is no 
empirical data to validate the model, the outputs were verified. No runs 
experienced errors with unexpectedly high or low service times, or with 
very high or very low numbers of EVs served. Queue times and lengths 
were reported correctly at very high and very low numbers of charging 
stations and over long and short cutoff times. 

The parameters used for the baseline case are given in Table 1: 
The results for the Prince George baseline case are given in Table 2: 
In the baseline case, the charging networks in the city were shown to 

be not enough to accommodate demand during a mass evacuation under 
the present-day conditions described above. While this insight alone 
may be useful for Prince George as it currently is, what generalizations 
can be extracted for other communities facing similar challenges? 

The number of EVs (nTotalEVs) and the number of EVs requiring 
charging (nrEVs), the cutoff time period (Tevac), and the number and type 
of charging stations can be changed to explore potential trends. Sensi-
tivity analysis is conducted to examine the impact of important pa-
rameters on the network charging capacity. The parameters examined 
are given in Table 3: 

For each scenario, for nserved, Nmaxqueue, and Tevac the results were not 
normally distributed (Shapiro-Wilk test for normality, p«0.05). Given 
that the results are not normally distributed, a non-parametric Kruskal- 
Wallis H-test (one-way ANOVA on ranks) was used. All trials resulted in 
statistically significant differences between results (p«0.05). 

The results of the trial in which the number of EVs is changed are 
given in Table 4: 

As expected, when the number of EVs increases, the percentage of 
EVs in the system that are charged to completion decreases (a difference 

Table 1 
Parameters for the Prince George baseline scenario.  

Parameter Value 

nTotalEVs  59 
nrEVs  44 
Tevac (hours)  8 
Scale Parameter σ 237.78 
Level 2 Chargers 8 
Level 3 SC 0 
Level 3 CCS 1 
Level 3 CHAdeMO 0  
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of 10.6% when the number of EVs double), while the maximum queues 
and average queue times increase (182% increase and 55% increase 
respectively when the number of EVs doubles). One thing to note is that 
as the number of EVs increases, the number of EVs served increases as 
well. Shorter interarrival times as a result of more EVs needing to charge 
within the same time period lead to fewer unused charging stations 
towards the beginning of the time period examined. However, the de-
mand quickly outstrips the number of charging stations available and 
the queue becomes saturated. 

Even in cases where the number of EVs was reduced to 25% of the 
baseline level, 46% of EVs that required charging still did not charge to 
completion before evacuating. This is due to the arrival time curves to 
the stations not changing. Some vehicles may still choose to arrive only 

an hour before the potential cutoff time, leaving them unable to receive 
a full charge. Future research will be needed to determine how actual or 
perceived queues at EV charging stations impact the timing at which EV 
owners decide to charge their vehicles (Figs. 8–10). 

The results of the trial in which the evacuation cutoff time is changed 
are given in Table 5: 

As expected, when the cutoff time increases, the percentage of EVs in 
the system requiring charging that charge to completion increases (a 
difference of 25% when cutoff time doubles) while maximum queue 
length decreases (a 53% decrease when cutoff time doubles). Of interest 
is that as the cutoff time increases, average queue times increase before 
decreasing. These non-monotonic results are due to EVs having a longer 
time period in which they can wait in the queue before the simulation 
cutoff time forces them to leave the system. As the cutoff time continues 
to increase, interarrival times become further apart. This means that EVs 
are more likely to show up to an available charging station, as a result 
decreasing average queue time of the system (Figs. 11–13). 

The results of the trial in which the number of EV charging stations is 

Table 2 
Results from the Prince George baseline case study.  

Output Mean SD 

nserved 
(# vehicles)  

16 3.58 

nserved

nrEVs  

0.36  

Nmaxqueue 

(# vehicles)  
17 3.62 

Tavgqueue 

(mins)  
91.7 21.33  

Table 3 
Parameters for different scenarios.   

Independent 
Variable Ratio 

Parameters 

Ratio of # of EVs 
Compared to 
Baseline  

nTotalEVs  nrEVs  

0.25 15 11 
0.5 30 23 
0.75 44 33 
1 59 44 
1.25 74 56 
1.5 88 66 
1.75 103 77 
2 118 89 

Ratio of Cutoff Time 
Compared to 
Baseline  

Tevac 

(hours)  
Scale 
Parameter σ 

0.5 4 118.89 
1 8 237.78 
1.5 12 356.67 
2 16 475.56 
2.5 20 594.45 

Ratio of number of 
Charging Stations 
Compared to 
Baseline  

# Level 2 
Chargers 

# Level 3 
Chargers 

0.5 4 0 
0.5 4 1 (1 CCS) 
1 8 1 (1 CCS) 
2 16 2 (2 CCS) 
3 24 3 (3 CCS) 
3 24 3 (1 CCS, 1 

CHAdeMO, 1 SC)  

Table 4 
Results when ratio of nrEVs to baseline is changed.  

Ratio of nrEVs to baseline  nrEVs  nserved 

(# EVs)  
σserved  nserved

nrEVs 
x 100  Nmaxqueue 

(# EVs)  
σmaxqueue  Tavgqueue 

(mins)  
σavgqueue  

0.25 15 6 1.92 54.5% 1 0.133 4.79 6.49 
0.5 30 11 2.62 47.8% 3 2.06 26.97 19.67 
0.75 44 14 3.23 42.4% 9 3.05 66.27 23.67 
1 59 16 3.58 36.4% 17 3.63 91.7 21.33 
1.25 74 18 3.57 32.1% 25 3.87 112.05 20.40 
1.5 88 20 3.93 30.3% 32 4.43 123.83 18.19 
1.75 103 21 3.91 27.3% 40 4.52 134.44 18.41 
2 118 23 3.96 25.8% 48 4.68 141.88 17.00  

Fig. 8. Percentage of EVs requiring charging charged to completion at different 
ratios of number of EVs. 

Fig. 9. Maximum queue length at different ratios of number of EVs.  
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changed are given in Table 6: 
As expected, when the number of charging stations increases, the 

maximum queue length and average queue time decreases (a 76.5% 
decrease and 75% decrease respectively when number of charging sta-
tions doubles, and a 94.1% decrease and 92.8% decrease when the 
number of charging stations triples). Of interest is that as number of 
charging stations increases, the number and percentage of EVs in the 
system requiring charging that charge to completion increases before 
decreasing (from 27.3% of EVs charged at baseline to 45.5% at twice the 
number of charging stations, before falling to 40.9% at triple the number 
of charging stations). This is a side effect of the queueing behaviour 
implemented. EVs will always take the first available charger of the 
highest level available to them. Instead of waiting for a level 3 charger to 
be available, an EV will always take an unoccupied level 2 charger. This 
has the effect of slotting more EVs that could potentially make use of a 
level 3 charger into a level 2 charger instead. Queueing reduces the 
likelihood of this happening, as an EV that could make use a Level 3 
charger might become placed in queue behind vehicles that can only 
make use of level 2 chargers. When a level 3 charger opens up, the EV 
that could make use of it “jumps the queue” ahead of the vehicles that 
could only make use of level 2 chargers. In effect some amount of 
queueing increases the likelihood that a vehicle that can make use of a 
level 3 chargers uses it instead of a level 2 charger. This behaviour 
represents a very risk averse evacuee who would rather take a guaran-
teed slot at a level 2 charger rather than gamble additional time spent in 
a queue to try and get a slot at a level 3 charger. In reality, some people 
would be likely to take this gamble (Figs. 14–16). 

Two final trials were conducted to determine the impact of the types 
of charging stations in the system. Both trials were compared with each 
other and were found to have statistically significant differences be-
tween results (p < 0.05). The results of the trial without and with a level 
3 charging station are given in Table 7: 

As expected, when the one level 3 charging station is replaced with a 
level 2 charging station, there is a significant decrease in charging 
network capacity, in this case a 33.3% decrease in the number of EVs 
requiring charging served. The percentage of EVs in the system that are 
charged to completion decreases (a difference of 9.1%), while the 
maximum queues and average queue times increase (a 12.0% increase 
and a 13.8% increase respectively) (Fig. 17). 

The results of the trial in which the level 3 charging stations are 
balanced evenly by type (see Appendix A for discussion of level 3 
charger types) are given in Table 8: 

When the three level 3 CCS charging stations are replaced with a 

Fig. 10. Average queue time at different ratios of number of EVs.  

Table 5 
Results when ratio of Tevac to baseline is changed.  

Ratio of Tevac to baseline  Tevac 

(h)  
nserved 

(# EVs)  
σserved  nserved

nrEVs 
x 100  Nmaxqueue 

(# EVs)  
σmaxqueue  Tavgqueue 

(mins)  
σavgqueue  

0.5 4 10 2.79 22.7% 22 3.11 59.99 10.64 
1 8 16 3.58 36.4% 17 3.63 91.70 21.33 
1.5 12 22 3.79 50.0% 12 3.60 100.20 31.91 
2 16 27 3.87 61.4% 8 3.36 88.59 38.78 
2.5 20 30 4.01 68.2% 5 2.83 67.31 38.64  

Fig. 11. Percentage of EVs requiring charging charged to completion at 
different ratios of cutoff time. 

Fig. 12. Maximum queue length at different ratios of cutoff time.  

Fig. 13. Average queue time at different ratios of cutoff time.  
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CCS, CHAdeMO, and SC station, there is a significant increase in 
charging network capacity, in this case a 61.1% increase in the number 
of vehicles served. The percentage of EVs requiring charging in the 
system that are charged to completion increases (a difference of 25%), 
while the maximum queues and average queue times decrease (a dif-
ference of 9.0%). While this may not have as large an effect in the future 
when charging stations with different adapters become more prevalent, 
or charging adapters become standardized, in the present systems with 
an unbalanced makeup of level 3 charging stations are at a disadvantage 
when compared with systems where the makeup of level 3 charging 
stations is more evenly balanced (Fig. 18). 

It was found that with respect to maximum queue lengths, the model 
is most sensitive to decreasing the number of EVs, followed by 
increasing the number of chargers, followed by increasing Tevac. With 
respect to the number of vehicles served, the model is most sensitive to 
increasing the window of time between the voluntary evacuation notice 
and the interruption of charging, Tevac, followed by decreasing the 
number of vehicles, followed by increasing the number of chargers 
available. With respect to average queue times, the model is most sen-
sitive to increasing the number of chargers, followed by decreasing the 
number of vehicles, followed by increasing Tevac. Ensuring a balanced 
makeup of level 3 chargers will increase the number of vehicles that can 
be charged in a mass evacuation. 

5. Discussion 

The results of the case studies modelled indicate that EVs will likely 
pose problems in a mass evacuation scenario in the present. Whether 
these problems will persist into the future will depend on a number of 
factors, particularly how fast EV ownership grows, how many EV 
charging stations are installed and when they are installed, and trends in 
battery capacities and charging speeds. 

The results from the queueing model indicated that Prince George 
does not have enough charging network capacity to accommodate all 
EVs in a mass evacuation. Only 36% of vehicles requiring charging were 
charged to completion before being forced to depart. In addition to this, 
queue times were found to be very long at 92 min. There is a significant 
opportunity cost for evacuees waiting in queues, as they could spend this 
time gathering family members and supplies or making other prepara-
tions for the evacuation. Max queue lengths were found to be 17 vehicles 
long. Maximum queue lengths will be of more interest when they are 
location-specific. Unlike gas stations, many charging stations are today 
located in parking lots. It will depend on the layout of these charging 
stations whether queues may spillover into nearby streets, or whether 
there will be enough parking spots to accommodate maximum queues. 
As the number of EVs increase, potential traffic disruptions from long 
queues will become a more pressing consideration. The trends found 
during this case study should hold for most locations. 

It would be wise to keep in mind what factors policymakers have 
control over. The number of EVs and the models of those vehicles will 
largely be out of policymaker’s hands and to some extent, so too will the 
period of time in which the evacuation takes place (Tevac). Tevac will 
depend on the type of emergency being planned for, and emergency 

Table 6 
Results when ratio of number of charging stations to baseline is changed.  

Ratio of # of Charging Stations to baseline # of Level 2 Chargers # of Level 3 Chargers nserved 

(# EVs)  
σserved  nserved

nrEVs 
x 100  Nmaxqueue 

(# EVs)  
σmaxqueue  Tavgqueue 

(mins)  
σavgqueue  

0.5 4 1 
(1 CCS) 

12 3.00 27.3% 25 3.17 146.25 24.53 

1 8 1 
(1 CCS) 

16 3.58 36.4% 17 3.63 91.70 21.33 

2 16 2 
(2 CCS) 

20 3.53 45.5% 4 3.01 22.71 13.37 

3 24 3 
(3 CCS) 

18 3.12 40.9% 1 0.213 6.56 4.59  

Fig. 14. Percentage of EVs requiring charging charged to completion at 
different ratios of number of charging stations. 

Fig. 15. Maximum queue length at different ratios of number of 
charging stations. 

Fig. 16. Average queue time at different ratios of number of charging stations.  
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Table 7 
Results without and with a level 3 charging station.  

Ratio of # of Charging Stations to baseline # of Level 2 Chargers # of Level 3 Chargers nserved 

(# EVs)  
σserved  nserved

nrEVs 
x 100  Nmaxqueue 

(# EVs)  
σmaxqueue  Tavgqueue 

(mins)  
σavgqueue  

0.5 5 0 8 2.29 18.2% 28 2.87 160 23.52 
0.5 4 1 

(1 CCS) 
12 3.00 27.3% 25 3.17 146.25 24.53  

Fig. 17. Percentage of EVs requiring charging charged to completion without and with level 3 chargers, maximum queue length without and with level 3 chargers, 
and average queue time without and with level 3 chargers. 

Table 8 
Results with unbalanced and balanced level 3 charging station types.  

Ratio of # of Charging Stations to 
baseline 

# of Level 2 
Chargers 

# of Level 3 Chargers nserved 

(# 
EVs)  

σserved  nserved

nrEVs 
x 

100  

Nmaxqueue 

(# EVs)  
σmaxqueue  Tavgqueue 

(mins)  
σavgqueue  

3 24 3 
(3 CCS) 

18 3.12 40.9% 1 0.213 6.56 4.59 

3 24 3 (1 CCS, 1 CHAdeMO, 1 
SC) 

29 3.60 65.9% 0 0 5.97 4.45  

Fig. 18. Percentage of EVs requiring charging charged to completion without and with a balanced makeup of level 3 charging station types, maximum queue length 
without and with a balanced makeup of level 3 charging station types (no queue for the balanced makeup scenario), and average queue time without and with a 
balanced makeup of level 3 charging station types. 
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managers can be aware that a shorter Tevac by moving up mandatory 
evacuation notices will increase problems associated with EV charging 
and as a result on the number of EVs stalled en route to their destination 
post-departure. Charging and fueling will have to be weighed against 
other considerations when determining when to give a mandatory 
evacuation notice, as discussed in Chapter 5 of Lindell et al. [39]. 
Emergency managers may be able to reduce the time between voluntary 
and mandatory evacuations and as a result shift departure curves for the 
evacuation to encourage vehicles to charge and fuel earlier before loss of 
services at charging and fueling stations. Even if earlier notices can be 
given, there are further trade-offs to be considered when issuing 
voluntary and mandatory evacuation notices. Vehicle charging needs to 
be weighed against the cost of issuing earlier warnings which may not 
end up requiring mandatory evacuations. This imposes significant op-
portunity costs on evacuees who choose to evacuate unnecessarily [77]. 

Policymakers may have some element of control over how many EV 
charging stations there are, and the type of charging stations available. 
Subsidies to build EV chargers of certain classes that have adapters that 
are not currently available would help ensure all vehicles have some 
access to a level 3 charging station (if they can make use of level 3 
chargers). Policymakers can also subsidize the construction or operation 
of new level 3 public charging stations, or level 2 home charging sta-
tions, if there is a risk of their location needing to undergo a mass 
evacuation. Of course, the cost of these subsidies needs to be weighed 
against the likelihood of a mass evacuation occurring and the costs 
associated with the total delays imposed by stalled EVs as a result of 
inadequate charging capacity. 

To reduce demand on charging networks in the pre-departure stages, 
another potential policy intervention is to reduce the distance between 
charging stations along evacuation routes to reduce the amount of time 
EVs would need to charge before departing. Some work to determine 
optimal interurban placement of fueling and charging stations has 
already been done by Gao et al. [78] and Colmenar-Santos et al. [18] 
respectively. While it is likely that there will be a greater number of 
interurban charging stations in the future, subsidies to accelerate the 
rate at which they are built could be justified in part on the grounds of 
increased performance during evacuations. 

It is possible that as the number of charging stations along evacua-
tion routes increases, EV charging networks will perform better than 
conventional fuel networks. While conventional fueling stations may 
have fuel shortages during periods of high demand, EV charging stations 
can continue to operate as long as they have access to a power supply. If 
charging stations have grid access or are able to make use of off-grid 
solar, they may be able to service more vehicles than a fueling station 
that runs out of fuel during an evacuation. Legislation exists in Florida 
and New York that requires gas stations along evacuation routes to have 
back-up power generators at gas stations [79,80]. No similar require-
ment exists for EV charging stations along evacuation routes. This 
legislation would not guarantee that charging stations could be used 
during evacuations due to the inadequacy of back-up generator power 
output to meet EV charging needs, as well intermittency issues with 
off-grid solar photovoltaic charging systems [81]. Evacuations with 
compounding factors, like large amounts of smoke from wildfires or 
heavy cloud cover during hurricanes, could interrupt service at off-grid 
systems. 

Emergency preparedness may be just one reason among many to 
subsidize EV charging infrastructure. 

6. Conclusion and future research 

In summary, EVs bring a number of benefits to society, however, 
mass evacuations may be one area where at the present time they may be 
more of a liability than an asset. The problem of EV charging during 
evacuations will magnify over time as EVs continue to grow in popu-
larity. The model developed has the flexibility to incorporate different 
EV makes and models, as well as different levels of charging stations. 

Thus, while the analysis in this paper focusses on evacuations, with some 
extensions the model can estimate the charging capacity under business- 
as-usual or other planning scenarios. 

A computer simulation model was developed and tested using Prince 
George, British Columbia, as a case study. The model agrees with trends 
intuitively expected and provides quantitative estimates that can be 
adjusted to fit a variety of communities and situations, particularly those 
involving remote communities at risk from wildfires. Sensitivity analysis 
was conducted to examine the impact of a larger number EV ownership 
rate, the number and type of charging stations and duration of evacu-
ation window on the charging capacity of the examined network. The 
results of the queueing model indicated that, in the present, Prince 
George’s EV charging network does not have the capacity to handle a 
short-notice mass evacuation. The results of the sensitivity analysis 
indicate that as the number of EVs increased and the number of charging 
stations decreased, the percentage of EVs that could be served signifi-
cantly decreased, as expected. Providing a longer window for evacua-
tion by giving earlier voluntary and mandatory evacuation notices 
increases the number of vehicles that can be served. Emergency man-
agers may consider issuing earlier notices to EVs to charge and fuel 
earlier. However, there are some related risks to be considered when 
issuing earlier warnings that may not end up requiring a mandatory 
evacuation. Another important finding that policymakers potentially 
have a degree of control over is that of increasing the capacity of 
charging station network especially in jurisdictions where it is deemed 
insufficient for evacuations. For instance, for the examined case study, 
while maintaining the same number of charging stations having a 
balanced makeup of level 3 fast chargers of different types substantially 
increases the capacity of charging networks. 

Future work could examine how charging network capacity changes 
as charging station adapters become standardized and as EV battery 
sizes increase over time. Future work could also further explore the 
behavioural dynamics of charging or refueling before evacuations to 
better understand arrival times to stations and queueing behaviour. 
More complex models aimed at fully understanding a certain location’s 
evacuation dynamics could also incorporate travel time from residences 
to charging stations and consider the effects of evacuation traffic on 
those travel times, as well as the potential impacts of EV charging on 
evacuation traffic patterns, such as queues of EVs backing up onto streets 
and impeding traffic. Incorporating imperfect information about 
charging station locations, charger adapters and compatibility, and 
unknown queue lengths is another level of complexity which could be 
explored. Incorporating charging cutoff times if evacuees are knowl-
edgeable of EV charging stations could add a further level of precision to 
future work, however, there are unsettled behavioural questions about 
charging behaviour during an evacuation that would need to be 
explored first. These considerations would aid both evacuation planning 
in the present day and planning for the location of future charging 
stations. 

Research is needed to explore charging and refueling behaviour, and 
whether pre-evacuation charging behaviour for EVs is significantly 
different than refueling behaviour for internal combustion-engine ve-
hicles. More specifically, research is needed to determine how actual or 
perceived queues at EV charging stations impact the timing at which EV 
owners decide to charge their vehicles. Determining whether there is a 
maximum amount of time EV owners are willing to wait in a queue to 
charge vehicles could inform whether it is reasonable to assume there is 
no abandonment in the queueing model. Research is also needed to 
determine whether EV owners, particularly those with level 2 charging 
stations at home, would risk leaving their home to queue for a level 3 
charging station. 

More research could be done to determine the likelihood that evac-
uees will take an EV if they own an ICEV as well. Some households might 
choose to leave an EV behind and only take a single ICEV if they are 
concerned about charging times or vehicle range during an evacuation. 
Understanding these changes in behaviour would be valuable to inform 
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future models. 
Incorporating EV charging into emergency evacuation planning, in 

the same way conventional vehicle refueling is incorporated into current 
evacuation planning, will go a long way towards mitigating this prob-
lem, or at the very least preventing unexpected surprises during a mass 
evacuation. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 

the work reported in this paper. 

Acknowledgements 

The author would like to thank NSERC CREATE in Integrated 
Infrastructure for Sustainable Cities (IISC), Canada, Grant # 511060- 
2018 for funding and making this research possible. The author would 
also like to thank the members of the CREATE Integrated Infrastructure 
for Sustainable Cities (IISC) program for enabling this research, and 
would like to thank Dr. Lina Kattan and Dr. David Layzell for their 
guidance.  

Appendix A. Electric Vehicle Charging Stations 

A table of electric vehicle charging stations is provided for reference. Note that charging times given below may vary based on environmental 
conditions, like temperature or the age and lifetime use of the battery.  

Table 9 
Overview of Charging Stations  

Charging Station 
Type 

Voltage Charging Time for an Average- 
Sized EV (2020 Nissan Leaf) 

Notes 

Level 1 120V 18.5 h Portable chargers compatible with 120V wall sockets are the most common Level 1 charger. 
Level 2 240V 11.5 h Level 2 wall charging stations require a 240V outlet. Most home Level 2 charging stations need to be 

purchased by the EV owner and installed by electricians. 
Level 3 DC Fast 

Charger 
~480V–500V 40 min Voltage can vary by charging station and maximum voltage may be capped on certain EV models. The 

most common DC Fast Charging station adapter types are CCS, CHAdeMO, and Tesla Supercharger. 
While each has the same basic functionality, CCS is predominately used in American and European 
models, while Asian models predominately use CHAdeMO. Tesla models make use of Supercharger and 
CCS chargers.  

Examples photos of the different charging stations are given below:

Fig. 19. An example of a Level 1 portable charger. "The 110/120V charging ’nozzle’" by Major Nelson is licensed under CC BY 2.0.  

Fig. 20. Examples of an outdoor (left) and indoor wall mounted (right) Level 2 charging stations. "BMW i3 electric car" by Janitors is licensed under CC BY 2.0. 
"Skoda EV charger" by Ivan Radic is licensed under CC BY 2.0.  

C.D. MacDonald et al.                                                                                                                                                                                                                         



International Journal of Disaster Risk Reduction 56 (2021) 102093

15

Fig. 21. An example of a Level 3 DC Fast Charging station with CHAdeMO (top right) and CCS (bottom right) adapters. "umn-chademo-and-ccs-charger" by Mulad is 
licensed under CC BY 2.0. 
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