Nitrogen fixation, hydrogen production and N₂O emissions

Bryan Flynn¹, Amanda Graham², Neal Scott², David B. Layzell³, and Zhongmin Dong^{1,3}

¹Department of Biology, Saint Mary's University, 923 Robie St, Halifax, Nova Scotia, Canada B3H 3C3; ²Department of Geography, Queen's University, Kingston, Ontario, Canada K7L 3N6; and ³Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4. Received 19 June 2013, accepted 27 January 2014. Published on the web 5 February 2014.

Flynn, B., Scott, N. and Dong, Z. 2014. Nitrogen fixation, hydrogen production and N₂O emissions. Can. J. Plant Sci. 94: 1037–1041. H₂ is a by-product of the nitrogenase reaction. Exposure to H₂ is linked to increased N₂O production, increased CO₂ fixation and plant growth promotion in soil. The effects of H₂ exposure on soil were observed using controlled H₂ gas treatments and field trials with legumes. In field trials, increased N₂O production was observed in soil adjacent to legume nodules and inoculation of H₂-oxidizing isolates led to increased N₂O emissions in corn fields. Many H₂-oxidizing isolates tested positive for key denitrification genes, indicating a connection between H₂ uptake and N₂O emissions. H₂ treatment significantly increased copy number of the nitrite reductase (nirK) gene suggesting increased denitrification as the source of N₂O. There was also a significant increase in copy number and expression of the RubisCO (cbbL) gene in soil. H₂-oxidizing bacterial isolates (JM63 and JM162a) were found to promote plant growth, increasing tiller number and yield in spring wheat and barley. Combined results of T-RFLP and 16S rDNA clone libraries analysis revealed bacterial community structure changes in response to H₂ treatment, primarily with increases to the Gammaproteobacteria and Betaproteobacteria groups. The results of these studies help provide a better understanding of the soil bacterial community's responses to H₂ exposure and may lead to the development of a commercially viable plant growth promoting inoculant.

Key words: Soil, H₂ exposure, denitrification, CO₂ fixation, plant growth promoting rhizobacteria, rhizosphere

Flynn, B., Scott, N. et Dong, Z. 2014. Fixation de l'azote, production d'hydrogène et émissions de N₂O. Can. J. Plant Sci. 94: 1037–1041. L'hydrogène est un sous-produit de la réaction commandée par la nitrogénase. On associe l'exposition à H_2 à une production accrue de N₂O, à une plus grande fixation du CO₂ et à une croissance accélérée de la plante dans le sol. Les auteurs ont observé les effets de l'exposition du sol à l'hydrogène en recourant à divers taux d'application de H_2 et en effectuant des essais sur le terrain avec des légumineuses. Lors des essais sur le terrain, on a relevé une production plus importante de N2O dans le sol adjacent aux nodules des légumineuses et l'inoculation d'isolats oxydant l'hydrogène engendre de plus forts dégagements de N₂O dans les champs de maïs. Beaucoup d'isolats oxydant l'hydrogène ont réagi positivement lors des essais visant à identifier les principaux gènes de dénitrification, signe qu'il y a un lien entre l'absorption de H_2 et les émissions de N_2O . Le traitement au H_2 a augmenté sensiblement le nombre de copies du gène codant la nitrite réductase (nirK), ce qui laisse croire que la dénitrification est la source des émissions de N₂O. On a aussi noté une augmentation du nombre de copies et de l'expression du gène RubisCO (cbbL) dans le sol. Les isolats bactériens qui oxydent H₂ (JM63 et JM162a) accélèrent la croissance des plantes, augmentant le nombre de talles et le rendement du blé de printemps et de l'orge. Les résultats combinés de l'analyse des banques de clones par T-RFLP et ADNr 16S révèlent que la structure de la population bactérienne change avec le traitement au H₂, principalement avec la prolifération des gammaprotéobactéries et des bêtaprotéobactéries. Les résultats de ces études nous aideront à mieux comprendre la réaction de la microflore du sol à l'exposition au H2 et pourraient déboucher sur l'élaboration d'une inoculant commercialement rentable, capable d'accélérer la croissance des plantes.

Mots clés: Sol, exposition au H₂, dénitrification, fixation du CO₂, RFCP, rhizosphère

Crop rotation and intercropping with legumes are long standing agricultural practices. The benefits of crop rotation include avoiding the diminishing yield of continuous mono-cropping, the control of pests and the occurrence of certain crop diseases (Emmond and Ledingham 1972; Roush et al. 1990; Peters et al. 2003). Legumes form symbiotic relationships with rhizobial bacteria in soils to form root nodules; these nodules are the site of biological nitrogen fixation. It is this nitrogen fixation that explains much of the benefits of legume rotation and the fixed

³Corresponding author (e-mail: Zhongmin.Dong@ smu.ca).

Can. J. Plant Sci. (2014) 94: 1037–1041 doi:10.4141/CJPS2013-210

nitrogen can reduce the need for synthetic nitrogen-based fertilizers, which contribute to N_2O emissions (Kelner et al. 1997; Verge et al. 1997). However, studies suggest that significant amounts of N_2O are released from legume fields, and little has been done to understand these emissions (Rochette and Janzen 2005). Preliminary studies (MacKinnon, Drury and Layzell, unpublished data) have found no evidence that growing legumes are able to produce N_2O under a wide range of treatments to produce hypoxic or anaerobic conditions within nodules,

Abbreviations: HUP, uptake hydrogenase; PGPR, plant growth promoting rhizobacteria

1037

despite the fact that rhizobia extracted from legume nodules have displayed denitrification of nitrate to N_2O (O'Hara and Daniel 1985).

H₂ gas is an obligate by-product of the nitrogen fixation pathway that occurs within legume nodules and is produced in large quantities in legume crops (Conrad and Seiler 1980). In nodules that lack an uptake hydrogenase enzyme (HUP) this H_2 is released from the nodule into the soil where it induces bacterial H2 oxidation (La Favre and Focht 1985). The majority of agricultural legume crops are Hup- (lacking the HUP enzyme) and release H₂ into the soil (Ruiz-Argueso et al. 1979; Uratsu et al. 1982). It is possible that this H_2 plays a role in the N_2O emissions that are observed in legume fields. The increase in H₂ oxidation has also been shown to be closely linked with both O_2 consumption and CO_2 fixation in soils. When H_2 is oxidized 60% of the electrons produced are used in the consumption of O_2 and 40% in the fixation of CO_2 (Dong and Layzell 2001). The enhanced O_2 uptake in soils exposed to H_2 may create the hypoxic or anaerobic conditions around H₂-releasing nodules which promote the denitrification process, leading to N₂O production and emission (Sahrawat and Keeney 1986). As previously mentioned, little work has been done to investigate the N₂O emissions from legume fields. An understanding of the mechanism through which N₂O emissions occur may aid in their mitigation.

Legume crops have also been reported to increase soil carbon stocks (Hussain et al. 1988), providing the potential to offset fossil fuel emissions. This may be achieved in part through the noted CO_2 fixation observed in soils exposed to H_2 evolved from legume nodules (Dong and Layzell 2001). Again, a better understanding of the mechanism through which CO_2 is fixed in leguminous soils may allow for the better control this carbon-sequestering potential.

OBJECTIVES

Many legume symbioses allow this H₂ to diffuse into soil where it stimulates the growth of soil microbes, some of which have been implicated in stimulating plant growth (plant-growth-promoting rhizobacteria, PGPR), building soil carbon pools, and increasing N₂O (a potent greenhouse gas) emissions. Over the past few years the research interest of this team has focused on three main areas. First, to investigate the N2O emission from legume fields, particularly the impacts of H₂ released from legume nodules on denitrification in soil adjacent to nodules. Second, to understand the CO_2 fixation in soil linked with H₂ oxidation to explain the role of legumes in enhancing soil C stocks, and to provide a scientific basis for claiming emission reduction credits for legume cultivation. Third, to study the plant-growth-promoting effects of bacteria isolated from H₂-treated soils and soils exposed H₂-releasing legumes, to develop commercially viable H₂-oxidizing bacterial inoculants.

RESULTS AND DISCUSSION

H₂ Oxidation and N₂O Emission

In repeated laboratory experiments with field soils that have not been exposed to legume crops for at least 20 yr, long-term (weeks) exposure of soil to elevated concentrations of H₂ (similar to that experienced by soils adjacent to legume nodules) results in a major (8–10 times) increase in the emissions of N₂O. This result clearly shows the connection between the H₂ gas and soil N₂O production, and provides a foundation for the hypothesis that the elevated levels of N₂O production in leguminous crops is linked to the evolution of H₂ from the legume nodules.

H₂ oxidation increases soil oxygen uptake (Dong and Layzell 2001) and may cause hypoxic conditions favored by denitrifying bacteria. Dose-response of N₂O emissions with H₂ exposure rates was investigated to test this hypothesis. Soil samples from fields that have not seen legume crops for at least 20 yr received three H₂ treatments. The high H₂ treatment soil received H₂ at a rate of 200 nmol H_2 cm⁻³ h⁻¹, an exposure rate calculated to be representative of that measured in soil within a few centimeters of a legume nodule (Dong and Layzell 2001). The medium H_2 treatment received H_2 at a rate of 20 nmol H_2 cm⁻³ h⁻¹. The air-treated soil received H_2 at a rate of 0.1 nmol H_2 cm⁻³ h⁻¹. The soil N₂O emissions rate increased sharply for the first phase of soil exposed to either high or medium H_2 levels. The soil N_2O emissions rate reached saturation first under a high H₂ level. For the soil treated at a medium H_2 level, the N_2O emissions rate continued to increase for several weeks and eventually reached the level similar to that under the high H₂ level. The air-treated soil showed a constant low N₂O emissions rate throughout treatment. These results suggest that a medium level of H₂ oxidation is enough to induce soil N_2O production. The medium level of H_2 is capable of triggering a full level of soil N₂O emission, suggesting that the N₂O production is not only limited to the surface of the nodule, but spreads to soil exposed to a low level of H_2 gas such as that distant from Hup – nodules, or around Hup + nodules.

The similar N₂O emission rates under medium and high H₂ levels suggest that there are other factors in the system besides the oxygen level changes. Studies were carried out to look more closely at the bacteria responsible for the H₂ oxidation in soils for genes involved in nitrification and denitrification. A real-time PCR study showed that gene copy numbers of nirK, a gene that codes for nitrite reductase in the denitrification process, was significantly higher in H₂-treated soil samples than in air-treated soil. This suggests that the increased N₂O production in H₂-treated soil samples may come from the denitrification process. It is possible that H₂ gas exposure promoted certain denitrifying bacterial populations; the activity of these bacteria caused an increase in N₂O emissions. This result provides evidence to support the linkage between the H_2 oxidation in soil and N_2O production in legume fields.

To understand the situation in the field, soil samples were collected adjacent to N₂-fixing legume nodules. The soil H₂ uptake rate, bacterial community structure, and the N₂O emissions rates from soil around different nodules were studied. The results show that soil adjacent to active Hup- nodules has a greater H_2 uptake ability and increased H₂-oxidizing microbial population (Zhang et al. 2009). Data also showed much higher rates of N_2O emissions from soil adjacent to nodules compared with soil collected further away from nodules. However, similar N₂O emission rates were detected from soil samples around Hup - and Hup + legume nodules, although the H_2 release rate of the Hup + nodule was only about 20% of the Hup - nodule. This result may be explained by the similar soil N₂O emission rates after medium and high H₂ level treatment in the laboratory. To further study the effects of Hup status on soil N₂O production and persistence of the elevated N2O emission, corn plants were used to rotate with soybeans that had received different inoculations. The results show that corn fields whose soils were exposed to nodulated legume roots the previous year had higher rates of N₂O production than soils exposed to non-nodulating legume roots and control bulk soil. Again, no significant differences were observed between the Hup+ and Hup- symbioses. These results indicate that the effect of soybean nodule activity on soil N₂O emissions is not limited to the time when soybeans are grown, but also occurs for crops grown in subsequent years following the soybeans. The similar N₂O emissions seen in fields treated with different Hup statuses may be due to the fact that Hup + nodulesstill release some H₂ into the soil, although at lower rates than the Hup – nodules. This overwintering effect shows that elevated N₂O production continues in the absence of H₂ gas. This suggests that H₂-oxidizing microbes isolated from legume soils may also enhance N₂O emissions when added to bulk soil that has not seen legumes. For this, two previously isolated H₂-oxidizing microbes, JM63 (Variovorax paradoxus) and JM162a (Flavobacterium johnsoniae) (Maimaiti et al. 2007) were used to inoculate corn seeds. Soil samples collected from corn fields inoculated with JM63 and JM162a showed a trend of having higher N₂O emission rates than the non-treated control soils when measured in the laboratory; however, there was no significant difference between the two inoculants. The corn plots inoculated with JM63 and JM162a showed a trend of higher soil N_2O emissions in 8 of the 11 field measurements. Again, no statistically significant differences were observed between the JM63 and JM162a. These results again show a trend of elevated N₂O emissions from soil, related to legumes, in the absence of H_2 gas. The soil had not been exposed to H_2 gas in this experiment. It is possible that H_2 is having an indirect effect on N₂O emissions through the H₂-oxidizing bacteria. Previous studies have shown that there is an increase in the population of H₂-oxidizing bacteria surrounding legume nodules (La Favre and Focht 1985). We have also demonstrated that several H_2 -oxidizing isolates contain nitrifying and denitrifying genes. It seems the H_2 -oxidizing microbial populations play a crucial role in soil N_2O production with growth of N_2 -fixing legume crops.

In order to understand the effects of H_2 exposure on the soil bacterial community, four separate 16S rRNA gene clone libraries were constructed from air- and H_2 treated soil in the laboratory, and soil adjacent to Hup + and Hup – nodules, respectively. From each of the four bacterial clone libraries, 350 clones were randomly picked and sequenced.

The sequence data show that the largest bacterial group is Proteobacteria, followed by Bacteroidetes and Actinobacteria. The Gammaproteobacteria population increased most after laboratory H₂ treatment, while β and γ subdivisions increased significantly in the soil, supporting Hup– nodules. Flavobacteria contribute a little to the increase in Bacteroidetes in soil supporting Hup– nodules.

The results show that there are detectable changes occurring in the soil bacterial community as a result of H_2 exposure. Similar results were also found in a German study looking at H_2 -treated soils with net CO₂ fixation; the study found that there were increases in β and γ subclasses of Proteobacteria, as well as bacteria of the Cytophaga–Flavobacterium–Bacteroides phylum (Stien et al. 2005). This may explain the changes that are seen in soil H_2 , CO₂ and O₂ exchange that occur gradually with H_2 exposure (Dong and Layzell 2001). It may also help to explain the persistence of N₂O emissions in fields that have contained legumes in the absence of H_2 gas.

The previously mentioned studies should aid in the understanding of the elevated N_2O emissions seen in legume fields, and may aid in finding methods for the reduction of these emissions. Some previous work has shown that there is a strong growth response to H_2 -treated soils and soils inoculated with H_2 -oxidizing bacteria (Maimaiti et al. 2007). Further studies may allow for the reduction of legume-related N_2O emissions through the use of PGPR inoculants isolated from H_2 -treated soils. Such an inoculant is one that would promote plant growth, reduce N_2O emission and also enhance the CO₂-fixing ability of H_2 -treated soils.

H₂ Fertilization and CO₂ Fixation

Hydrogen oxidation in soil has been studied using simultaneous measurements of H_2 , O_2 and CO_2 exchange to quantify the rate of H_2 oxidation, O_2 uptake and CO_2 fixation of soils treated with H_2 in the laboratory (Dong and Layzell 2001; Stien et al. 2005). The results show that 60% of the reducing power from H_2 oxidation was coupled to O_2 uptake, and the remaining 40% was coupled to CO_2 uptake. If this finding is typical of legume soils, it could help to explain the role of legumes in enhancing soil C stocks, and may provide a scientific basis for claiming emission reduction credits for legume cultivation.

It was, therefore, believed that soil near Hup – legume nodules will have high and predictable rates of H₂ uptake-coupled CO₂ fixation. To test this, soils exposed to either air or H₂ at 200 nmolH₂ cm⁻³ h⁻¹ for 3 mo were incubated with 1% ¹³CO₂ at room temperature in the presence or absence of H₂. Results show a significantly higher ¹³CO₂ uptake into the H₂-treated soil, in the presence of H₂. This result demonstrates a clear link between H₂ oxidation and CO₂ uptake in the soil. This shows that even H₂-treated soils in the absence of H₂ lose their CO₂-fixing ability. It suggests that the reducing power for CO₂ fixation comes directly from H₂.

H₂-treated soil demonstrated strong rates of ¹³CO₂, particularly in the presence of H₂ gas, while oven-dried and autoclaved soil showed no changes in isotopic composition in the presence of ¹³CO₂ with or without the addition of H₂, suggesting that the uptake of ¹³CO₂ in the presence of H₂ results from biotic processes.

Since the H₂-coupled CO₂ fixation is a biotic process, it narrows the possibilities for the mechanism through which it acts. Ribulose-1,5-bisphosphate carboxylase/ oxygenase (RubisCO) is involved in the first step of the Calvin Benson Bassham cycle, and its abundance and importance has been shown in agricultural soils (Selesi et al. 2007). To investigate the possible role of RubisCO in H₂ related CO₂ fixation, bacterial RubisCO gene copies and expression were quantitatively compared between soils with and without H_2 exposure. A significant increase in *cbbL* (coding for the large subunit of RubisCO) gene copies and expression was found in H₂treated soils compared with air-treated soils. A trend was noted, that higher gene copies and expression were found in soil adjacent to Hup - nodules compared with Hup + nodules; however, there was no significant difference between the two. These results show that there is a link between the H₂-induced CO₂ fixation and bacterial RubisCO activity of the soil. This suggests that the CO₂ fixation is achieved, at least in part, through bacterial RubisCO.

In order for the H₂-coupled CO₂ fixation to be a viable option for CO₂ mitigation, the carbon fixed in the soil should be in a stable form. Soils were labelled with H₂coupled ¹³C ₂ and fractionated in various ways to test the stability of fixed C in soil. Results indicate significant incorporation of ¹³C into the microbial biomass following treatment with H₂ and ¹³CO₂. Measurements of ¹³C in the light fraction material were highly variable and difficult to reproduce. Interestingly, even during this short-term incubation, some of the ¹³CO₂ was incorporated into the more resistant acid-stable fraction of soil organic matter. Future work is needed to calculate the exact proportion of the label that was incorporated into different SOM fractions, and estimate the long-term release of this material based on estimates of the mean residence time of carbon in these different soil organic matter pools. **Plant Growth Response and Inoculant Production** As mentioned, previous work has shown a strong plant growth response to H₂-treated soils and soils inoculated with H₂-oxidizing bacteria (Dong et al. 2003; Maimaiti et al. 2007). It is possible to develop commercially viable inoculants from H₂-oxidizing bacteria isolated from soil adjacent to legume nodules. The ideal commercial inoculant would be a PGPR that promotes plant growth, while having minimal effect on the N₂O emission of the soil.

In order to proceed with the use of H₂-oxidizing inoculants, it must first be possible to isolate H₂oxidizing bacteria from H₂-treated or leguminous soils. A novel gas flow-through incubation system has allowed isolation of H₂-oxidizing bacteria from H₂-treated soil and soil adjacent to Hup - soybean nodules grown in greenhouse and field conditions (Maimaiti et al. 2007). These isolates either had apparent activity of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase or rhizobitoxine activity. Both are known to decrease the concentration of ACC, an immediate precursor of ethylene, and are therefore inhibitors of ethylene biosynthesis (Maimaiti et al. 2007). The reduction of ethylene biosynthesis makes isolates capable of being excellent candidates for plant growth promotion inoculants (Glick et al. 1998).

To test the plant growth promotion ability of these isolates, corn seeds were inoculated with strains of H_2 oxidating microbes: JM63 (*Variovorax paradoxus*) and JM162a (*Flavobacterium johnsoniae*) in a field trial. The inoculated corn was taller and had greater leaf area and plant dry weight than the control plants. Cob weight was also greater in the inoculated plants. Yield was greater for inoculated plants compared with the control, but the differences were not statistically significant. Similar tests were performed on spring wheat and barley. Significantly higher number of tillers per plant and higher head density were observed with inoculated plants.

These results suggest that plant growth promotion through the use of H₂-oxidizing isolates is possible, but clearly more work is needed in this area. Although the preliminary results do look promising there may be other factors involved in the inoculation of these isolates. As mentioned previously, our studies have shown that corn plots inoculated with JM63 and Jm162a have both been found to have higher soil N₂O emissions compared with non-inoculated controls. In order for these isolates to be viable options for promoting plant growth and reducing N₂O emissions from agricultural fields, the denitrification ability of these isolates has to be reduced or eliminated.

It is the belief of this group that it should be possible to develop an inoculant that will be useful for promoting crop growth and reducing N_2O production in legume fields. Hydrogen-oxidizing bacterial isolates with less or no N_2O production can be used as a co-inoculant with rhizobia for legume crops. The rhizobial bacteria will form nitrogen fixation symbiosis with legume plants inside nodules, while the hydrogen-oxidizing bacteria will have a better chance to propagate in the soil around the nodules. This kind of inoculant could potentially reduce the N_2O production from legume fields and promote CO_2 fixation without losing the plant-growthpromoting ability.

The stimulation of plant growth in corn, spring wheat and barley is very promising. The detection and reisolation of inoculants at the end of the growing season suggests persistent and possible propagation of inoculants in the rhizosphere. Once hydrogen-oxidizing PGPR isolates without denitrification genes (or with low expression) are identified, they can be tested as inoculants for soybean crops and cereals.

FUTURE GOALS

Our original proposal set as a major goal to assess whether it would be possible to produce a bacterial inoculant that would lead to a more positive greenhouse gas balance for soybean cropping systems. While we have made significant advances in understanding both the biogeochemical processes and microbial genetics that influence this balance, there is still more work needed to quantify the benefits adequately to justify an investment in this technology. We have shown a clear link between soil H₂ oxidation and both production of N₂O and uptake of CO₂, and demonstrated a molecular basis for both of these processes. In terms of the biophysical controls, we need further studies on field-based estimates of N₂O production to reconcile the discrepancy between field and laboratory-based flux measurements. To get a better understanding of the impact that CO₂ fixation can have on this balance, we need further experiments on the impact of longer labelling periods on both rates of CO₂ uptake and the turnover time of that fixed carbon. On the genetic side, further work on soil microbial activities associated with hydrogen oxidization, particularly on N₂O production, CO₂ fixation, and plant growth promotion is needed. We are working on the soil microbial meta-transcriptome analysis. Once we have better insights into these key controlling factors we can begin testing the impact of inoculating a soybean field with a H₂-oxidizing bacteria that no longer has the genes for N₂O production. If successful, these bacteria could revolutionize the production of soybeans by enhancing soybean production while at the same time reducing net greenhouse gas emissions (perhaps even leading to soybeans becoming net greenhouse gas sinks) from an expanding (globally) cropping system.

Conrad, R. and Seiler, W. 1980. Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget. J. Geophys. Res. **85**: 5493–5498.

Dong, Z. and Layzell, D. B. 2001. H₂ oxidation, O₂ uptake and CO2 fixation in hydrogen treated soils. Plant Soil. **229**: 1–12.

Dong, Z., Wu, L., Kettlewell, B., Caldwell, C. D. and Layzell, D. B. 2003. Hydrogen fertilization of soils – Is this a benefit of legumes in rotation? Plant Cell Environ. **26**: 1875–1879.

Emmond, G. S. and Ledingham, R. J. 1972. Effects of crop rotation on soilborne pathogens of potato. Can. J. Plant Sci. 52: 605–611.

Glick, B. R., Penrose, D. M. and Li, J. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190: 63–68.

Hussain, S. K., Mielke, L. N. and Skopp, J. 1988. Detachment of soil as affected by fertility management and crop rotations. Soil Sci. Soc. Am. J. 52: 1462–1468.

Kelner, D. J., Vessey, J. K. and Entz, M. H. 1997. The nitrogen dynamics of 1-, 2- and 3-year stands of alfalfa in a cropping system. Agric. Ecosyst. Environ. 64: 1–10.

La Favre, J. S. and Focht, D. D. 1983. Conservation in soil of H_2 liberated from N_2 fixation by Hup-nodules. Appl. Environ. Microbiol. 46: 304–311.

Maimaiti, J., Zhang, Y., Yang, J., Cen, Y. P., Layzell, D. B., Peoples, M. and Dong, Z. 2007. Isolation and characterization of hydrogen-oxidizing bacteria induced following exposure of soil to hydrogen gas and their impact on plant growth. Environ. Microbiol. 9: 435–444.

O'Hara, G. W. and Daniel, R. M. 1985. Rhizobial denitrification: A review. Soil Biol. Biochem. **17**: 1–9.

Peters, R. D., Sturz, A. V., Carter, M. R. and Sanderson, J. B. 2003. Developing disease-suppressive soils through crop rotation and tillage management practices. Soil Tillage Res. 72: 181–192.

Rochette, P. and Janzen, H. H. 2005. Towards a revised coefficient for estimating N_2O emissions from legumes. Nutr. Cycling Agroecosyst. 73: 171–179.

Roush, R. T., Hoy, C. W., Ferro, D. N. and Tingey, W. M. 1990. Insecticide resistance in the colorado potato beetle (Coleoptera: Chrysomelidae): Influence of crop rotation and insecticide use. J. Econ. Entomol. 83: 315–319.

Ruiz-Argueso, T., Maier, R. J. and Evans, H. J. 1979. Hydrogen evolution from alfalfa and clover nodules and hydrogen uptake by free-living *Rhizobium meliloti*. Appl. Environ. Microbiol. **37**: 582–587.

Keeney, D. R. and Sarawat, K. L. 1986. Nitrogen transformations in flooded rice soils. Nutr. Cycl. Agroecosyst. 9: 15–38. Sahrawat, K. L. and Keeney, D. R. 1986. Nitrous oxide emission from soils. Adv. Soil Sci. 4: 103–148.

Selesi, D., Pattis, I., Schmid, M., Kandeler, E. and Hartman, A. 2007. Quantification of bacterial RubisCO genes in soils by cbbL targeted real-time PCR. J. Microbiol. Methods. 69: 497–503.

Stein, S., Selesi, D., Schilling, R., Pattis, I., Schmid, M. and Hartmann, A. 2005. Microbial activity and bacterial composition of H_2 -treated soils with net CO_2 fixation. Soil Biol. Biochem. 37: 1938–1945.

Uratsu, S. L., Keyser, H. H., Weber, D. F. and Lim, S. T. 1982. Hydrogen uptake (HUP) activity of *Rhizobium japonicum* from major U.S. soybean production areas. Crop Sci. 22: 600–602. Verge, X. P. C., De Kimpe, C. and Dejardins, R. L. 1997. Agricultrual production, greenhouse gas emissions and mitigation potential. Agric. For. Meteorol. 142: 255–269.

Zhang, Y., He, X. and Dong, Z. 2009. Effect of hydrogen on soil bacterial community structure in two soils as determined by terminal restriction fragment length polymorphism. Plant Soil. 320: 295–305.