
Connor Scheu Civil Engineering

INTRODUCTION

Home heating demands account for ~9%^[1] of Alberta's greenhouse gas emissions and are expected to increase by 40% by 2060 if no action is taken.

This project investigates four mechanisms to reduce these emissions:

- 1. Improve the Alberta Building Code (ABC) for new builds
- 2. Retrofit existing buildings
- 3. Legislate high efficiency (HE) furnaces
- 4. Encourage smaller homes

METHODS

An MSExcel[©] model was developed to calculate greenhouse gas emissions from single-detached residential houses in Alberta.

- "Business as Usual" (BAU) vs. Improved building codes and an energy efficiency retrofit program.
- BAU model was run using data provided by CanESS.^[2]
- Natural gas was assumed to be the primary source of home heating energy^[2] for the foreseeable future
- Figure 1 shows the calculated reductions in residential space heating possible through each mechanism.
- The 2015 average load is 0.67 GJ/m^{2[2]}

Factor	GJ/m ²	% Change
New ABC (new builds)	0.30	50%
Retrofit (old homes)	0.40	50%
High efficiency furnace	0.10	14%
Home size(new builds)	0	45%

Fig. 1 Table of possible space heating load reductions

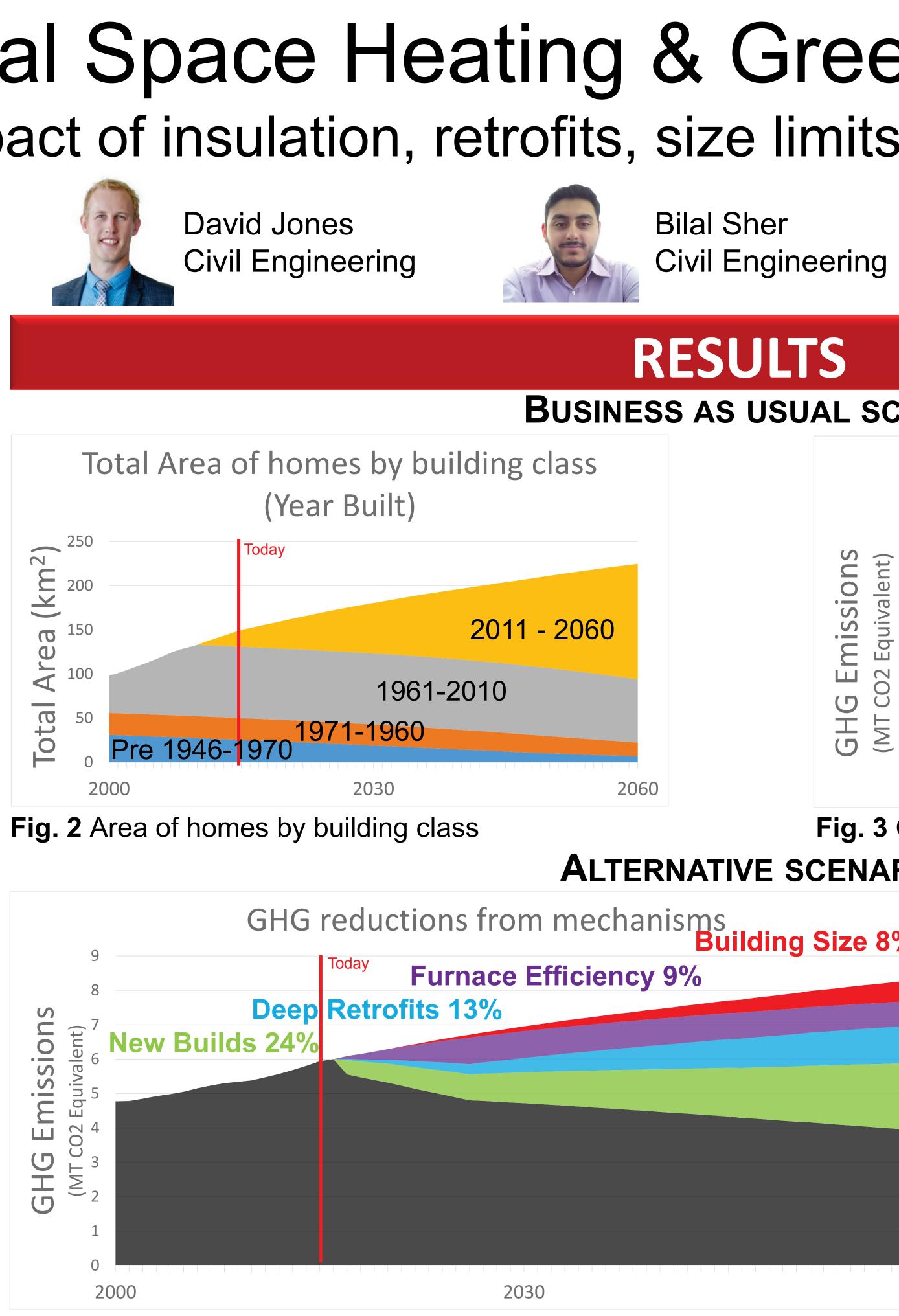


Fig. 4 GHG reductions due to mitigation measures

Intervention Mechanism

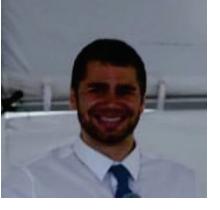
- Encourage smaller homes (average of 120m²)
- Legislate 95% efficient furnaces
- Legislate 98% efficient furnaces
- Reduce new build energy use by 50%

Retrofit half of existing homes to use 50% less ener

Fig. 5 Table of required carbon price to pay for each intervention mechanism

- 1. Savings on utility bills and carbon tax fees already make 95% efficient furnaces profitable
- 2. Changes to the building code could easily be accepted by public if carbon tax increased to \$50 and incentive program were put in place to cover half of the costs
- 3. It is not very cost effective to use retrofit programs to reduce space heating GHG's in single detached homes

REFERENCES


[1] Mohareb E., and Row J. Improving Energy Efficiency in Alberta's Building Code. Pembina Institute. Alberta Real Estate Foundation, 2014. Web. 30 Sept. 2015.

[3] Straube, John. "BSD-011: Thermal Control in Buildings." Building Science Corporation. Building Science Corporation, 2 Nov. 2006. Web. 16 Nov. 2015.

Residential Space Heating & Greenhouse Gas Emissions: The impact of insulation, retrofits, size limits, and high furnace efficiency

Yawei Xiao Mechanical Eng.

James Jenden Natural Sciences

S		
JAL SCENAR	10	
GHG P B C C C C C C C C C C C C C	Emissions by building class (Year Built) Today 2011 - 2060 1961-2010	
	1971-1960 1946-1970	
2000	2030 2060 missions by building class Rapid reductions possible through HE furnace legislation	
	and building code changes Total reductions of 4.4 Mt per year at 2060	
•	Mechanisms are ~50% more effective if taken individually	
e 2060		
	ired Carbon Price Per Ton net zero cost to consumer)	
	N/A	
	\$10	
	<u>Ф</u> 4 О	

\$40

\$100

\$750

[2] what If? Technologies Inc., 2014. Canadian Energy Systems Simulator (CanESS) - version 6, reference scenario. <u>www.caness.ca</u>

The key areas of focus are increasing furnace efficiency and air sealing of new builds.

DISCUSSION

ne greatest absolute GHG reductions an be achieved through an intensive ep retrofit program and a progressive uilding code.

ne most financially feasible approach is push to increase furnace efficiency rovincially and to add smart-legislation air barriers in the building code. nis result is similar to that found in erature.^[3]

nis model could be enhanced by cluding study of the modal shift towards ulti family dwellings like apartments which have roughly $\frac{1}{2}$ the space heating quirements of single detached homes)

CONCLUSIONS

nrough a four pronged approach, epending on the level of mitigation tensity:

is possible to reduce GHG nissions from residential space eating by at least 50% (4.4 Mt CO₂eq) **2060** in comparison to a "business as usual" scenario.

This comes with an economic cost and potential political cost.

ACKNOWLEDGEMENTS

We would like to thank the following contributors: • What If Technologies: CanESS Model Owners • City of Calgary's Justin Pockar; our industry

advisor This poster produced as part of University of Calgary course Scie529 in Fall 2015. For info: <u>dlayzell@ucalgary.ca</u>