

David B. Layzell, PhD, FRSC, Professor & Director
Canadian Energy Systems Analysis Research (CESAR) Initiative, University of Calgary
dlayzell@ucalgary.ca
www.cesarnet.ca

Canada's Past, Present & Future (?) Greenhouse Gas (GHG) Emissions

What Could Fully Autonomous Vehicles do?

- Provide mobility to those who are currently not well served (elderly, disabled, children)
- Avoid most of the more than 1.2M traffic fatalities that occur globally every year (90+% due to driver error).
 - ➤ In Canada: 2,000 fatalities/yr + ~11,000 serious injuries, with an estimated societal cost of over \$60B/yr (~5% of GDP) in 2007.
- ☐ **Reduce** congestion though:
 - Vehicle to Vehicle (V2V)
 - Vehicle to Infrastructure (V2I)
 - Vehicle to Web (V2W)

How will AVs be deployed? And how rapidly?

Scenario A: PAVs (Personal Autonomous Vehicles)

□ Purchased by individuals for personal use
 ▷ More features than that needed for 95% of trips
 □ Vehicles spend 96% of time in a garage or a parking lot
 □ Lower the 'opportunity cost' associated with driving, so:
 □ Longer commuting distances (urban sprawl and parking avoidance)
 □ Replace some air travel, at higher energy/fuel use
 □ Safety benefits justifies higher highway speeds / larger engines requiring more fuel use.

Net result: Increase in energy use & GHG emissions by 50+%

Scenario B: ESAVs

(Electric, Shared Autonomous Vehicles)

- First Victim: Taxi drivers...then personal vehicles (SAVs are <50% of current cost, and more convenient)
 A single, SAV could replace 10 personal vehicles;
 Electric power SAVs favoured over Int. Combust. Engines;
 'Right-sizing' of vehicles;
 May compete with public transport, and increase congestion if not well managed;
 Parking lots / garages may become obsolete
 - Opportunity for densification/ walkable communities

Net result: Decrease in GHG emissions by up to 80% or more

How Rapidly Could Such a Disruption Occur?

Energy Systems in 2030?

- Poised for disruption (esp. mobility & oil sectors) but how?
- Most recent analysis:

Rethinking Transportation 2020-2030

"By 2030,...95% of US passenger miles traveled will be served by on demand autonomous, electric vehicles owned by fleets, not individuals." (https://www.rethinkx.com/transportation)

A RethinkX Sector Disruption Report

May 2017

James Arbib & Tony Seba

- Highlights (for USA by 2030)
 - eSAVs 2-10X lower cost than PAVs
 - eSAV will drive 800K km over 5 yrs vs. today's car (220K km in 13+ yr)
 - ☐ Save ~\$5,600/family/yr
 - ☐ Disposable income boost (\$1T/yr)
 - ☐ Productivity gain (GDP up \$1T/yr)
 - ☐ GHG emissions (80-90% decrease)

- ☐ Job losses (~5M jobs), but also gains
- ☐ Electricity Demand (+18%)
- Global Oil Demand (peak 2021@100M bpd; in 2030 @70M bpd)
- ☐ Oil Price (~\$25/bbl)
- New pipelines (stranded assets?)
- Mass stranding of autos after 2021
- ◆ Scenario modeling: powerful tool to explore energy futures

Thanks to Sponsor & Colleagues / Collaborators

Danasal Daasalsasa

CESAR Researchers

Dog Strootman

Ч	Das Straatiliali		Barena Dronkers
	Ralph Torrie		Kyle McElheran
	Song Sit		Jenessa Fett
	Kunbi Adetona		Moe Esfahlani
	Jessica Lof		
Sci	529 Students	on	eSAV project
	Jill Colquhoun		Robert Nguyen
	Kyle McElheran		Jacob Webb
	Mehrdad Motiei		

David B. Layzell, PhD, FRSC, Professor & Director

Canadian Energy Systems Analysis Research (CESAR) Initiative, University of Calgary dlayzell@ucalgary.ca www.cesarnet.ca